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Abstract
Electrowetting is becoming a more and more frequently used tool to manipulate
liquids in various microfluidic applications. On the scale of the entire
drop, the effect of electrowetting is to reduce the apparent contact angle of
partially wetting conductive liquids upon application of an external voltage.
Microscopically, however, strong electric fields in the vicinity of the three phase
contact line give rise to local deformations of the drop surface. We determined
the equilibrium surface profile using a combined numerical, analytical, and
experimental approach. We find that the local contact angle in electrowetting is
equal to Young’s angle independent of the applied voltage. Only on the scale
of the thickness of the insulator and beyond does the surface slope assume
a value consistent with the voltage-dependent apparent contact angle. This
behaviour is verified experimentally by determining equilibrium surface profiles
for insulators of various thicknesses between 10 and 250 μm. Numerically and
analytically, we find that the local surface curvature diverges algebraically upon
approaching the contact line with an exponent −1 < μ < 0. We discuss the
relevance of the local surface properties for dynamic aspects of the contact line
motion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electric fields are widely used as a tool to manipulate liquids on small scales, in particular for
controlling the shape, the motion, and the generation of small drops of conductive liquids [1–5].
The electric fields give rise to free and/or polarization charges at drop surfaces and thereby
to mechanical forces acting on the liquid surface [6]. For sessile drops, the presence of
charges and electric fields also affects the wetting properties [7–10]. The most prominent
effect in this context is the electrowetting effect [4, 11, 12], which amounts to the fact that
the apparent contact angle of sessile drops on partially wetting substrates can be reduced by
applying an external voltage. Electrowetting has been used successfully for both fundamental
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experiments in wetting science [13–16] and a variety of technological applications including
liquid lenses [17–19], displays [20], and labs-on-a-chip [21, 22]. Electrowetting makes use of
dc and/or low ac frequency voltages, such that electric fields are completely screened from
the interior of the liquid. At higher frequencies (typically above several tens or hundreds
of kilohertz), electric fields penetrate the liquid and the character of the forces becomes
dielectrophoretic (see [23–25] and references therein).

Since electrowetting consists primarily of a reduction of the contact angle, there has
been a tradition of explaining electrowetting in terms of a variation of interfacial energies,
namely a reduction of the solid–liquid interfacial energy with increasing voltage [26].
This view dates back to early work on electrowetting, in which the wetting properties of
electrolytes in direct contact with metals were investigated. Others argued that electrowetting,
and in particular the now typical electrowetting-on-dielectric configuration in which an
insulating layer separates the electrolyte from the electrode, should be viewed as a purely
electromechanical effect [9, 27–30]. In particular, Jones [27, 29] introduced the method of
calculating the Maxwell stress tensor in order to derive the electromotive forces acting in
electrowetting. The former view seems to suggest that electrowetting affects primarily the
force balance at the contact line, whereas the latter view stresses the pressure balance at the
drop surface. Although both models predict the same variation of the contact angle and the
same electromotive forces, there has been some uneasiness as to how electrowetting should be
interpreted.

In two recent theoretical and numerical studies [9, 30], we demonstrated that the
electromechanical approach is the fundamentally correct one. From these studies, it also
becomes clear that the two views of electrowetting mentioned above are in fact consistent with
each other. On small scales (i.e. scale of the order of the thickness of the insulating layer)
the pressure exerted by the electric fields on the drop surface determines the local equilibrium
shape. If the drop shape is only considered on a larger scale, however, it is indeed appropriate
to interpret electrowetting as an effect that effectively reduces the solid–liquid interfacial
tension (and thereby the apparent contact angle). The purpose of the present communication
is (i) to provide an extended account of our earlier numerical work on equilibrium surface
profiles [9] and (ii) to present experimental results testing the theoretical models. The most
pertinent predictions of our theory are that (i) the local contact angle is equal to Young’s angle
independent of the applied voltage and that (ii) the curvature of the drop surface should diverge
close to the contact line. Both aspects are confirmed by the experiments.

The paper will begin with a brief review of the basic theoretical background. After that we
will discuss first our numerical results, followed by the experiments. The communication will
conclude with a discussion and some remarks about open problems in the field.

2. Physical background

A detailed overview over the theoretical background of electrowetting was given in [4]. In this
section, we provide a brief overview to clarify the basic physical concepts and notations that
will be needed in the following. Figure 1 shows the generic geometry of an electrowetting set-
up. A drop (radius R) of a partially wetting conductive liquid sits on a flat electrode, which is
covered by a thin insulating layer (thickness d). The liquid is typically an aqueous salt solution.
Materials are chosen such that the contact angle (Young’s angle) in the absence of electric fields
is rather large, θY > 90◦ (dashed surface profile). As a voltage is applied between the liquid
and the electrode the apparent contact angle decreases following the electrowetting equation

cos θ = σsv − σsl

σlv
+ cU 2

2σlv
= cos θY + η. (1)
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Figure 1. Schematic electrowetting set-up. The counter-electrode is shown in black at the bottom.
Grey: insulating layer. Dashed line: drop profile at zero voltage. Solid line: drop profile at finite
voltage.

Here, c = ε0εd/d is capacitance per unit area and η is the dimensionless electrowetting
number. σsl and σsv are the interfacial tensions between the solid substrate and the drop phase
(sl) and the ambient medium (sv), respectively. If we assume that the drop phase is perfectly
conductive and the ambient medium as well as the insulating layer are perfect dielectrics,
this equation can be derived either by minimizing simultaneously the surface energies and the
electrostatic energy, or by balancing the net forces acting on the contact line, as described in [4].
(In the appendix we provide a quantitative derivation of the electrowetting number taking into
account explicitly the distribution of ions inside the drop phase. The calculation shows that the
perfect conductor assumption is usually valid.) Common to both approaches is the fact that they
ignore the microscopic details of the electric field distribution close to the contact line. Vallet
et al [31] pointed out for the first time that the electric field �E in EW diverges within a region
of order d around the contact line. Hence equation (1) is only valid on a scale larger than d .
In typical EW applications, the drop size R is of the order of tens to hundreds of micrometres
whereas d is of the order of one micrometre or less. Thus equation (1) does indeed describe the
global morphology of the drop correctly.

The local morphology of the drop surface however does depend on the distribution of the
electric field and of electric charges in the system. As noted above, we assume that the drop
phase is perfectly conductive, i.e. the Debye screening length κ−1

D ≈ O(1 nm) of the drop phase
is considered to be much smaller than d . Hence, �E = 0 inside the drop and ( �E · �t)surf = 0,
i.e. the electric field is oriented perpendicular to the surface (�t is a local tangent vector at the
drop surface). In this case the electric field gives rise to a Maxwell stress

�el(�r) = ε0

2
�E(�r)2 (2)

pulling on the liquid surface along the outward normal. Beyond a certain threshold voltage,
it can even lead to an instability and to the ejection of satellite droplets [31, 32]. Below the
threshold voltage, the drop surface is in mechanical equilibrium if

�P = 2σlvκ(�r) − �el(�r). (3)

Here, �P is the pressure difference between the interior of the drop and the ambient phase
and PL = 2σlvκ is the Laplace pressure, where κ = (1/R1 + 1/R2)/2 is the mean curvature of
the liquid–vapour interface. (R1 and R2 are two principal radii of curvature at �r .)

Solving equation (3) for κ and thus for the drop shape requires the exact distribution of
the electric field, which itself depends on the drop shape. Hence both the drop shape and
the electric field distribution have to be calculated in a self-consistent manner. Furthermore,
the equilibrium surface profile has to satisfy a Young-type force balance equation right at the
contact line (i.e. at y = 0). Taking into account a possible contribution fel due to the diverging
electric fields, this equation reads

σsl + σlv cos θ = σsv + fel. (4)

3
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Figure 2. Geometry of the computational box and electrical boundary conditions for numerical
analysis. Point A is fixed. (Not to scale. See text for details.)

Later we will show that fel = 0 and thus cos θ = cos θY, independent of the applied
voltage.

To solve for the equilibrium drop shape, we followed a self-consistent numerical approach
for arbitrary field strength. For the sake of simplicity, we restricted ourselves to two-
dimensional systems, i.e. drops with R = ∞.

3. Numerical surface profiles

3.1. Numerical scheme

Figure 2 displays the geometry under consideration. The liquid occupies the space AKG. The
point O denotes the position of the contact line at zero voltage. We consider a situation in
which the liquid surface is pinned at the fixed point A on the right-hand side of the simulation
box. Furthermore, we assume that the curvature is zero far away from the contact line. Upon
applying a voltage, the drop surface and the contact line position K move freely, which implies
a variation of the drop volume. We split the numerical task into two steps. In the first one,
we determine surface profiles that satisfy the local force balance for a parameter set (θA; η).
(Note that the profiles obtained in this first step correspond to physical systems with variable
θY.) In the second step, we calculate for each of these mechanically equilibrated profiles the
total energy consisting of both the electrostatic energy and the surface energy. To identify the
physically realized equilibrium profiles, we determine the Young angle θY that minimizes the
total energy for each pair (θA, η).

Step one consists of the iterative calculation of mechanically equilibrated surface profiles.
Since d is the only length scale in the problem, all lengths will be reported in units of d .
Similarly, the electrostatic potential 	 will be normalized by the applied voltage U . In these
units, the Maxwell stress is given by �el(�r) = η(∇	)2/εd. 	 satisfies the Poisson equation

∇ · (ε(�r)∇	) = 0 (5)

everywhere outside the drop. Apart from the boundary conditions specified in figure 2, we
specified

	CDE(y) = 1

1 + εd

{
εd − y; −1 � y � 0

εd(1 − y/LCD); 0 � y � LCD
(6)

4



J. Phys.: Condens. Matter 19 (2007) 375112 F Mugele and J Buehrle

Figure 3. Convergence of drop profiles during the first ten iterations (parameters: η = 1; εd = 1;
θA = 60◦). Inset: zoomed view close to point K.

along CDE (with L being the distance CD) and a Neumann condition along AGF. The size of
the numerical box was chosen to be BC = CD = 80 and AG = 40 for most calculations. A
larger box size was used for the lowest values of θA. Several test calculations were performed
to verify that the results were independent of the box size.

If we represent the liquid surface as a function x = f (y), the curvature in two dimensions
is given by κ2D = f ′′/(1 + f ′2)3/2, where the primes indicate a derivative w.r.t. y. With this
definition the analogue of equation (3) reads

σlv
f ′′

(1 + f ′2)3/2
= η

εd
(∇	)2. (7)

Our iterative numerical procedure consists of the following: first, we fix an asymptotic
angle θA and choose a wedge shaped surface profile (AOG) as initial surface configuration.
Second, we calculate the electric field distribution for this configuration using a finite element
method, as implemented in the commercial program package Matlab. We used an adaptive
grid, which gives rise to a particularly high density of grid points close to the contact line. In a
typical run, we used 400 000 grid points in order to reduce the maximum deviation between the
numerical data and the known analytical solution for the wedge case to less than 10−4. Close
to the contact line the distance between two grid points was of order 10−5.

Once the electric field distribution was sufficiently converged, we integrated equation (7)
starting from point A, where the Maxwell stress vanishes down to the contact line. The vertical
position of point A and the fixed asymptotic angle θA were used as boundary conditions for
the numerical integration that was performed with a Runge–Kutta routine, also as implemented
in Matlab. The resulting refined surface profile was used as an input for the calculation of the
electric field distribution in the next iteration. Figure 3 shows a typical iterative set of profiles.
Typically, convergence was achieved in less than ten iterations. Profiles were determined for
a large set (>40) of asymptotic angles θA ranging from 6◦ to 70◦. (For the lowest values, the
size of the numerical box was increased to 500 in order to avoid numerical artefacts.) For each
asymptotic angle, the value of η was varied between 0 and 1 at a spacing of 0.2.

The surface profiles thus achieved represent mechanical equilibrium shapes for a given set
of parameters εd, η, and θA. In order to establish a relation between θA and the Young angle θY
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Figure 4. Free energy versus θA for θY = 105, 109◦, 113◦, . . . , 129◦. The minimum of each curve
indicates pairs of corresponding equilibrium angles θ(U) − θY.

of a given physical system, we calculated the free energy F of the system (in units of σlvd2)
consisting of both surface energies and electrostatic energy:

F(εd, η, θA) = −LKG cos θY +
∫ A

K
dS − η

εd

∫
V1

dV (∇	)2 − η

∫
V2

dV (∇	)2. (8)

Here, LKG is the length of the solid–liquid interface. The second term represents the
surface energy of the drop. This form of the free energy implies that we assume the interfacial
tensions σi to be voltage independent. The last two terms represent the electrostatic energy
inside the dielectric layer (V1) and outside (V2), respectively. In figure 4 we plot F as a function
of θA for a series of values of θY at a specific fixed value of η. For each value of θY, F displays
a minimum at a certain value of θA. This combination θY − θA corresponds to the equilibrium
drop configuration for all the parameters εd, η, θA, and θY.

3.2. Numerical results

We now discuss the results obtained from the procedure described above. Figure 5 shows the
correlation between θY and the equilibrium value of θA for the largest value of η (= 1). The
solid line represents the equation cos θA = cos θY + η. Thus we obtain as a result of our
calculations that the equilibrium value of θA is related to the Young angle by the electrowetting
equation (equation (1)). Note that this relation is fulfilled down to the lowest value of θA = 6◦
and up to a value of η = 1. In this two-dimensional system we find thus absolutely no indication
of contact angle saturation.

In figure 6 we show a number of profiles for various values of η for a fixed asymptotic angle
of θA = 60◦, i.e. the profiles correspond to different physical systems with variable values of
θY, as indicated in the figure caption. The profiles in figure 6(a) correspond to a dielectric layer
with εd = 1, the ones in (b) to εd = 2. Obviously the curvature of the profiles increases upon
approaching the substrate level y = 0, in agreement with the expectation that the electric field
and thus the Maxwell stress increases upon approaching the contact line. Furthermore, the
higher η, the larger the curvature of the profiles—in agreement with the expectation that higher
voltages should give rise to stronger electric fields. Another practically important observation

6
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Figure 5. Pairs of equilibrium angles θ(U) − θY (η = 1). The solid line indicates the expectation
based on equation (1).

is that the field-induced curvature is essentially concentrated to the region y � 1. Above
that level, the slope of the surface is so close to its asymptotic value corresponding to θA that
the deviation is barely noticeable—certainly from an experimental perspective. Comparing
figures 6(a) and (b) it also becomes apparent that the field effect is significantly reduced for
higher values of εd. This reduction is obviously related to the enhanced screening due to the
substrate polarizability, which focuses the electric field lines close to the contact line.

To analyse the slopes of the profiles in more detail, we introduce the normalized derivative

χ = f ′(y) − cot θY

cot θA − cot θY
, (9)

which has the property that χ → 0 for f ′ → cot θY and χ → 1 for f ′ → cot θA.
Figures 7(a) and (b) show χ corresponding to the dielectric constants of εd = 1 and 2, as
in figures 6(a) and (b). Far above the substrate, the slope thus approach a value corresponding
to the asymptotic angle θA, as expected. Close to the contact line, however, all profiles converge
(within the numerically accessible range) towards a slope corresponding to θY. We find thus
that the local contact angle remains equal to θY, independent of the applied voltage. This finding
implies that the electric contribution fel to the force balance at the contact line (equation (4))
vanishes.

To analyse this result further, we plot in figure 8 the square of the electric field strength,
which is proportional to both the Maxwell stress and the local surface curvature. Far away from
the contact line (for y 	 1), there is an algebraic region with a slope −2, which corresponds
simply to the result of basic electrostatics | �E | ∝ 1/y for a wedge with different electric
potentials on the both sides. In this region the thickness of the dielectric layer is negligible.
For y ≈ 1, a cross-over takes place with a complex distance dependence. For y � 1, yet
another algebraic regime is entered, however with a weaker slope. In figure 9 we display the
exponent ν of this algebraic law as a function of the local contact angle α, which we have by
now identified with θY. The symbols are obtained by fitting to numerical pressure data, like
those shown in figure 8. Clearly, the distance dependence becomes weaker with increasing
contact angle.

7
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Figure 6. Equilibrium profiles for θA = 60◦ and η = 0.2, 0.4, . . . , 1 (solid) and η = 0
(dashed). (The Young angles for the solid profiles are θY = 72.5◦, 84.3◦, 95.7◦, 107.5◦, and
120◦, respectively.) (a) εd = 1; (b) εd = 2.

The exponent of the algebraic behaviour close to the contact line can be understood in
terms of electrostatics. On such small scales, the substrate electrode is so far away that its
presence can be neglected (see inset figure 9). In that case, the electrostatic potential can be
written as a superposition of algebraic modes

	 =
∑

n

anφn, (10)

with

φn = rμn

⎧⎨
⎩

sin μn(π − α)

sin μnπ
sin μnϕ; 0 < ϕ < π

sin μn(2π − α − ϕ); π < ϕ < 2π − α.
(11)

This solution fulfills the boundary conditions 	 = 0 at ϕ = 0 and at ϕ = 2π − α.
The boundary condition that the normal component of the dielectric displacement has to be

8
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Figure 7. Normalized slopes versus height above the substrate. Same data set as figure 6.

continuous at ϕ = π leads to the additional requirement

εv tan μnπ + εd tan μn(π − α) = 0, (12)

where εv is the dielectric constant of the ambient medium, which was taken to be unity in the
numerical calculations. Since 	 → 0 for y → 0 the lowest mode n = 1 dominates for y � 1.
Inserting physically reasonable values of α between zero and π into equation (12) one finds
that

1/2 < μ1 < 1. (13)

The numerical solution of equation (12) is found to confirm the numerical results presented
in figure 9 (see solid lines). This result implies that the Maxwell stress � ∝ (∇	)2 and thus
the curvature of the equilibrium surface profile also diverge algebraically with an exponent

−1 < ν < 0. (14)

9
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Figure 8. (∇φ)2 ∝ �el versus height. Note the cross-over between two algebraic regimes for
y 	 1 with an exponent −2 and for y � 1 with a θY-dependent exponent (data derived from
figure 6(a)).

Figure 9. Algebraic exponent ν versus opening angle α (= θY).

3.3. Discussion of numerical results

Using the result of equation (14), one can actually show that the electrostatic contribution fel

to the force on the contact line actually vanishes. To see this, we note that

fel ∝ lim
δh→0

∫ δh

0
(∇	)2 dy ∝ lim

δh→0
δhν+1 = 0. (15)

The divergence of � is thus so weak that the net remaining force at the contact line
vanishes. Since only surface tension forces act on the contact line it is natural that the local
contact angle is indeed equal to θY, independent of the applied voltage.

As expected on dimensional grounds electric field-induced surface distortions are
concentrated in a region of order d around the contact line. On larger scales, the apparent
contact angle follows the electrowetting equation, equation (1). From a practical perspective,

10
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figures 6–8 indicate that substantial deviations from the macroscopic behaviour can only be
expected for z � 0.1d , in particular for larger values of εd.

We note here that a similar result can also be obtained in a rigorous analytical manner
using conformal mapping. Unfortunately, this calculation is restricted to small voltages. The
method requires the knowledge of a mapping function, which transforms the arbitrarily shaped
drop surface into a simpler geometry. Our approach in [30] makes use of the well known
mapping function for the undisturbed straight wedge profile in order to calculate the field
distribution in the transformed coordinate system. The resulting distortion of the surface profile
can then be expressed in terms of the Eulerian beta function and the hypergeometric function.
In this approximation, the local contact angle is analytically found to be voltage independent,
in agreement with the results described above. For y � 1, the same algebraic behaviour is
found as above with identical exponents even for large values of η. This agreement seems
surprising at first glance, since the approach is only valid for small η. The reason behind
this agreement is, however, that the conformal mapping approach also produces wedge shaped
surface profiles for y � 1 with an opening angle α = θY. In this case, the correct algebraic
exponent arises automatically—independent of the value of η. Substantial differences between
the two approaches can only be expected in the transition region around y ≈ 1.

4. Experimental surface profiles

4.1. Experimental techniques

Experiments were performed with aqueous drops immersed in a silicone oil bath (AK 5;
Wacker). In order to assure perfect conductivity, salt (NaCl) was added to the water to
achieve an electrical conductivity of ≈1 mS cm−1. The substrates were commercial Teflon
foils (Goodfellow) of variable thickness (10–250 μm) deposited on an ITO-coated glass slide.
According to the specifications the dielectric constant of the Teflon films was εd = 2.1. (To
assure a constant insulator thickness, a small amount of salt water was placed between the
ITO glass and the Teflon film.) The contact angle (Young’s angle) and the contact angle
hysteresis in the absence of voltage were ≈170◦ and <5◦, respectively. A drop size of the
order of 1 mm was chosen, well below the capillary length κ = (σlv/(g�ρ))1/2, where g is the
gravitational acceleration and �ρ = 0.2 g cm−3 is the density difference between the liquid
and the surrounding oil. A Pt wire with a diameter of 250 μm was immersed into the drops in
order to apply a dc voltage ranging from 0 to ≈800 V. Drops were imaged from the side using
a 5× microscope objective (Nikon) in combination with a zoom lens and a CCD camera.

4.2. Experimental results

Figure 10 shows a number of water drops in ambient oil for various values of the applied
voltage on three different substrates with a thickness d of 10 (panels (a)–(c)), 50 ((d)–(f)),
and 150 μm ((g)–(i)), respectively. Clearly, the drops are almost perfectly spherical with a
Young’s angle of approximately θY = 170◦ at zero voltage. Upon increasing the voltage, the
apparent contact angle decreased for all values of d . While the drop profile essentially retain
their spherical cap shape all the way down to the substrate for the thinnest dielectric layers,
clear deviations are seen for the thicker dielectrics at high voltage. In figure 11 we show a
zoomed view of the drop profiles in the vicinity of the contact line. Panels (a)–(c) correspond
to d = 10, 50 and 150 μm, respectively, indicated by the white bars. All pictures were taken at
roughly the same value of the electrowetting number η ≈ 1. These images clearly demonstrate
that surface profile distortions do indeed occur on a length scale given by the thickness of the

11
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Figure 10. Video images of drops for variable voltage corresponding to η ≈ 0, 0.5 and 1 (left to
right) and variable substrate thickness d = 10, 50 and 150 μm (top to bottom).

dielectric. Panels (d)–(f) were recorded at variable η = 0, 0.5 and 1, respectively, for constant
d = 150 μm. Obviously, the local slope close to the contact line remains constant close to 170◦,
as indicated by the dotted white lines. Thus two main predictions of the theoretical model are
confirmed directly by the experimental raw data.

To obtain a complete picture, we acquired drop profiles over a range of 0 < η < 1 for
all substrates and extracted the droplet contours from the images. First, we determined the
apparent contact angle. To do so, we fitted circles to the surface profiles sufficiently far away
from the contact line (i.e. at distances z > d; see figure 12). These circles were extrapolated
down to the substrate to obtain the apparent contact angle. The resulting electrowetting curve
is shown in figure 13. The contact angle indeed decreases in accordance with the macroscopic
expectation (equation (1)); however, the obtained slopes are systematically smaller than
expected (see figure caption). We attribute these deviations to an imperfect coupling between
the ITO electrode and the Teflon films. Possibly ambient oil wetting the Teflon (partially) crept
underneath the dielectric layer and replaced the thin salt water layer that was originally placed
there to insure good electric coupling. Obviously, this would affect in particular the data for the
thinnest dielectric layers. For d = 250 μm, the drops were frequently moving laterally at high
voltage such that no reliable data could be obtained for η > 0.3.

In figures 14 and 15, we show the surface profiles and the local slopes as a function of
the height z above the substrate. (Note that we deliberately use a different symbol than in
the two-dimensional case of the numerical simulations.) The profiles shown in figure 14 are
sixth order polynomial fits to the experimental data. This fitting procedure was found to be

12
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Figure 11. Close-up views of the contact line region. (a)–(c) η = 1; d = 10, 50 and 150 μm,
as indicated by the vertical white bars. The black dotted line indicates the substrate level. (d)–(f)
d = 150 μm; η = 0, 0.5 and 1. The white dotted lines have identical slopes.

Figure 12. Drop surface profiles for d = 150 μm at variable voltage (η = 0.06 (triangles), 0.4
(crosses), 0.9 (circles)). Symbols indicate experimental profiles, solid lines show circles fitted to the
upper part of the profiles. (For the sake of clarity only every tenth data point is shown.)

satisfactory w.r.t. both reduction of noise and simultaneously high fit quality (see panel (c)).
With the polynomial fits at hand, the local surface slopes can be computed easily without
excessive numerical noise as it frequently appears during numerical differentiation of discrete
data. In figure 15, we plot the slope angles w.r.t. the vertical direction, such that the value at
the z = 0 is equal to the local contact angle. The data clearly confirm the expected trend: for
thin insulating layers, the slope angle close to the substrate decreases essentially along with
the apparent macroscopic contact angle because our optical resolution is insufficient to resolve

13
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Figure 13. Electrowetting curve: cos θ versus applied voltage squared for variable nominal
substrate thickness as indicated. The thickness values determined from the linear fit curves are
22, 26, 59 and 172 μm, respectively.

Figure 14. Surface profiles for various voltages and d = 10 μm (a), 50 μm (b), and 150 μm
(c). Data correspond to η = 0.06, 0.3, 1.1, 1.7 (a); η = 0, 0.1, 0.6, 1.1 (b) and η = 0, 0.6, 1.1
(c). (Values for η are based on the nominal insulator thickness. The curves shown are sixth order
polynomial fits to the actual data. In panel (c) every tenth data point is shown to illustrate the fit
quality.)

14
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Figure 15. Local surface slope angle (w.r.t. the r-axis as indicated in figure 14(a)) versus height.
Same data as in figure 14.

the details of the profiles on a scale small compared to d . For large d , however, the resolution
is sufficient and the slope angle does indeed converge towards a unique, voltage-independent
value of φ(0) ≈ θY ′ for z → 0, as theoretically predicted.

Finally, we analysed the curvature of the surface profiles. The latter was calculated by
inserting the polynomial fitting coefficients into the general formula for cylindrically symmetric
systems

κ = − r ′′

(1 + r ′2)3/2
+ 1

r(1 + r ′2)1/2
, (16)

where the prime indicate the derivative w.r.t. z. The results are shown in figure 16. Obviously,
the calculation of the second derivative strongly enhances any inaccuracy involved in the fitting
procedure. This compromises the resolution and reliability of the procedure. Close to the
substrate, i.e. close to the boundary of the data to be fitted, the procedure becomes particularly
unreliable. Nevertheless, the data display a clear general trend: the higher the voltage, the
more the curvature tends to increase for z → 0. The data for d = 50 and 150 μm display a
maximum in the curvature somewhat above the substrate. Given the current resolution, we are
unable to identify whether this decrease is physical or whether it is due to inaccuracies of our
data analysis procedure. We note, however, that the raw images of the drops do also suggest
the existence of a maximum (see figure 11).
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Figure 16. Curvature of the profiles in figure 14 versus height.

5. Discussion and conclusion

The experimental data presented above confirm directly the most important conclusions of our
theoretical and numerical analysis: the local contact angle in electrowetting is equal to Young’s
angle, independent of the applied voltage. Drop surfaces are distorted (w.r.t. a spherical cap)
in a range of order d around the contact line due to the high local Maxwell stress. The mean
curvature of the drop surface increases for z → 0. In contrast to our previous experimental
attempts [30, 33], these conclusions can be drawn almost directly from the raw images. This
improvement has become possible due to the choice of the specific system, which displays both
a low contact angle hysteresis and, in particular, a very high Young’s angle.

At first glance it may seem disappointing that the divergence of the curvature is not equally
well demonstrated as the local slope. However, this is plausible for several fundamental
reasons. First of all, the field enhancement close to the contact line is very weak for blunt
‘tips’, giving rise to an extremely weak divergence. In the present case of θY ≈ 170◦ we
find ν ≈ 0.1 (from equation (12)). The divergence of the curvature is thus expected to be
much weaker than in the numerical data presented above. Furthermore, we should note that
the algebraic regime is only reached for y < 0.01 (cf figure 8). Even for the thickest substrate
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investigated here (d = 250 μm), the optical resolution is only of order 0.01d . Finally, we
should also note that the experimental drops are three dimensional and cylindrically symmetric
and have a finite radius, whereas our numerical system represents an ideal two-dimensional
system with infinite drop size. Future detailed studies of the field enhancement effect close to
the contact line should take these considerations into account when choosing the experimental
system as well as the experimental and numerical techniques.

The results presented here demonstrate clearly that electrowetting is in essence an
electromechanical effect, as pointed out earlier (e.g. [29]). In our theoretical analysis, the
interfacial tensions are assumed to be independent of the applied voltage. Electrical effects
enter the problem exclusively via the Maxwell stress �el in the force balance equation
(equation (3)) of the drop surface, while the electric contribution fel to the force balance at
the contact line (equation (4)) vanishes. (In fact, this result is in line with general arguments of
variational calculus [34]: body forces, such as electrostatic forces, do not contribute to the force
balance at the contact line.) However, if we minimize the total free energy of the system on the
global scale (figures 4 and 5), consisting of both electrostatic and surface energy, we recover
the basic electrowetting equation (equation (1)). On a global scale, the effect of the local
electrostatic pressure on the liquid surface thus sums up to a net force effectively pulling on the
contact line—in agreement with the general concept of the Maxwell stress tensor calculus [27].
Our numerical results indicate that the critical distance from the contact line where the electric
fields essentially die out is of order d . On scales larger than this, the electromechanical action
of the local electric fields sums up to a reduction of the effective solid–liquid interfacial tension.
This reconciles the two apparently contrasting interpretations of electrowetting.

A crucial issue concerning equilibrium properties that remains open is the origin of contact
angle saturation. In contrast to all published experimental data, our numerical results for two-
dimensional systems show no indication of contact angle saturation. We see two possible
reasons: the first one is that we did not include the possibility of dielectric breakdown of the
insulating layers, which limits the maximum voltage that can be applied (see [4] and references
therein). More interestingly, the absence of saturation in an ideal two-dimensional model
suggests that the shape of the surface profile in three dimensions may be important for some
saturation mechanisms. Surface modes running along the contact line were found to play a
role in contact line instabilities, which give rise to the ejection of satellite drops [31, 32]. Such
modes do not exist in a two-dimensional model.

The independence of the local contact angle from the applied voltage is expected to
have important implications for the dynamics of contact lines in electric fields. The local
configuration of the drop surface close to the contact line is a crucial element of all theories
of dynamic wetting. As we could show here, the actual local contact angle in typical
electrowetting experiments is several tens of degrees higher than naively expected, based on
the apparent contact angle. Varying the insulator thickness offers the possibility of tuning the
characteristic length scale on which the surface is distorted. Depending on the value of d
relative to characteristic length scales in dynamics wetting models, the relevant contact angle
may be either θY or θ(U). In a recent analysis of the spreading dynamics of water drops in
ambient oil, we were able to model the entrapment dynamics of thin oil films under the drop
using the apparent contact angle θ(U) [15]. This is plausible since that work was performed
with dielectric layers that were thin compared to the characteristic thickness arising from the
asymptotic matching condition in the classical Landau–Levich problem of dip coating. Other
processes, such as contact angle hysteresis (e.g. for drops in air) can involve much shorter
characteristic length scales, depending on the properties of the substrate heterogeneity. In
this case, we expected that θY rather than θ(U) is the relevant parameter for the wetting
dynamics. More detailed studies of the local dynamics should ultimately provide insight
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into the origin of the contact line friction parameter, that was found to be indispensable for
modelling electrowetting dynamics.
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Appendix

In this appendix, we will compare the properties of (i) perfect conductors, (ii) electrolytes,
which satisfy the linear Poisson–Boltzmann equation (we will call them in the following linear
electrolytes), and (iii) nonlinear electrolytes (in particular monovalent salts). We derive the
correct electrowetting number η to be used in equation (1) for all three cases. The free energy
of a droplet in the electrowetting configuration (liquid droplet phase l, ambient phase v) is given
by

E = σlvS + (σsl − σsv)S∗ − �pV + F (A.1)

Here, �p equals the pressure jump across the liquid–vapour interface and σlv, σsl and σsv

are the liquid–vapour, solid–liquid and solid–vapour interface tensions. S and S∗ denote the
areas of the liquid–vapour and liquid–solid interfaces. F contains the electrostatic contribution
to the energy and is given by

F = − 1
2

∫
dV ( �E(�r) �D(�r) + ��(	)). (A.2)

The last term contains the osmotic pressure of free charges and is nonzero only in an
electrolyte liquid phase. 	 is the electrostatic potential and the electric field �E(�r) = −∇	.
The dielectric displacement is given as �D(�r) = ε0ε(�r) �E(�r). The dielectric constant ε(�r)

generally is different for solid, liquid (respectively denoted εd, εl) and ambient phase (equal to
unity).

To a first approximation, fringe effects usually are neglected and the electrostatic energy
equals that of a plate capacitor formed by droplet and electrode. The energy per unit area of
this plate capacitor is interpreted as a contribution to the solid–liquid interface tension and gives
rise to the electrowetting equation (equation (1)).

For the perfectly conducting liquid, the energy per unit area is given by ε0εrU 2/2d and
the electrowetting number therefore equals η0 = ε0εrU 2/2γ d . In this case, 	 = 0 inside the
liquid phase.

For the electrolytes, the Debye length λ = κ−1 is the penetration depth of the electrostatic
potential into the liquid phase. Boundary conditions are 	 = 0 asymptotically inside the liquid
and 	 = U at the electrode. Furthermore, �D is steady across the solid–liquid interface.

In particular, for the linear electrolyte, 	 is given by ∇2	 = κ2	, where κ is defined
as κ2 = ∑

i q2
i ni/ε0εlkBT with the different ion charges qi and bulk densities ni. kB is

the Boltzmann constant and T the temperature of the liquid. Solving for the potential and
calculating the free energy per unit area, we get for the modified electrowetting number

η = η0
εld

εld + εrλ
. (A.3)
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This corresponds to two serial capacitors, one with dielectric constant εd and thickness d
and one with εl and λ.

For a monovalent salt, the Poisson Boltzmann equation is given by ∇2φ = κ2/ν · sinh(νφ)

with ν = eU/kBT and φ = 	/U . Solving and integrating for the free energy per unit area,
the modified Lippmann number is given by

η = η0 ·
[
(1 − φ0)

2 + 16

ν2λ

εld

εrλ
sinh2(vφ0/4)

]
. (A.4)

φ0 is the potential at the solid–liquid interface (in units of U ) and satisfies

1 − φ0 − 2

ν

εld

εrλ
sinh

(
νφ0

2

)
= 0. (A.5)

Usually λ is orders of magnitude smaller than d . In this case φ0 ≈ εrλ/εld and the linear
electrolyte and monovalent salt expansions of the electrowetting number both equal

η = η0

(
1 − εrλ

εld

)
. (A.6)

Inserting numbers for typical parameters in electrowetting experiments indicates that the
use of η0 (denoted simply as η in the main body of this paper) is usually sufficient.
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